TV Conversions

Upload Data via API

ISpet.tv

Overview

This guide outlines the process and specifications for uploading TV Conversion data

through the iSpot API. It is a secure and seamless way to integrate your impression data

into the iSpot platform without the use of a tracking pixel.

Steps Required

There are many different methods you can utilize to upload your data through the API, but

the general process will remain the same. We'll cover two methods below using Python

and Curl.

1.

2.

Provide a sample file in the specified format to be approved by iSpot for upload.
Your Customer Success Representative will then provide your API credentials.

Gather the file(s) to upload and split/compress if necessary based on
specifications below.

Authenticate using your API credentials.

Post your file(s) with passthru column (see “Available Dimensions” section)
Please notify your Customer Success Representative once successfully uploaded
Engineering will verify file contents meet the schema in “Available Dimensions”

If file contents meet schema requirements, files can be delivered daily, dropping the
passthru column

CSV File Format

The file(s) must strictly adhere to the specifications outlined below in order to be

processed.

e CSV UTF-8 (Comma delimited) (csv) - Rows are newline separated.

.Zip containing multiple files accepted.

e Compressed files must be under 200MB each, or the files won't be processed.

iISpet.tv

e Files must have unique file names for a given day. If two or more files with the same
name are uploaded, only the first file will be kept
e Comma separated — All values (except for headers) enclosed in doublequotes.

e Headers are case-sensitive.

Example formatting of header row and one row of sample data:

ip,datetime,siteid,app,type,customdata,passthru,useragent

"66.87.152.32","2021-01-31

17:30:56", TC-####-#","'web","purchase’,'customer_new,channel_paid-search’,"",'Mozilla/5.0
(Macintosh; Intel) AppleWebkit/537.36 (KHTML, like Gecko) Chrome 70.0.3359.117 Safari/537.36"

Upload Requirements

1. Files must be posted prior to 7:00 AM PDT/ 6:00 AM PST in order to be included in the
standard daily processing.

2. Files should contain data for the previous day only and the event expressed as a
UTC timestamp.

3. Data containing dates within the past 2 days OR data uploaded after 7:00 AM PDT/
6:00 AM PST will be included in a recurring batch processing that occurs 12 days
after the data date. This data will be available in the dashboard in 2 weeks.

4. Any data containing dates older than the past 12 days will have to be reprocessed
incrementally and will incur a daily cost for each day that needs to be reprocessed.
Please align with your customer success representative prior to uploading data

to set expectations.

iISpet.tv

Matching Methodology

iSpot leverages the client’s IP address to provide a wholistic measurement of all TV/OTT

media and conversion metrics. While IPv4 is most commonplace, iSpot can support

measurement of IPv6 addresses by integrating with a 3" Party identity resolution partner.

Use IPv4 if you want to match conversions to a Household.

Available Dimensions

While not all columns are required, it is recommended that you supply as many as

possible for more robust measurement. The asterisks (*) below denote the dimensions

that are currently available in the iSpot Analytics Platform.

Column Description Sample Value/Format Required
Name
ip Client IPv4 Address 66.87.152.32 Yes
useragent | Client useragent Mozilla/5.0 (Macintosh;
Intel) AppleWebKkit/537.36
(KHTML, like Gecko) Yes
Chrome 70.0.3359.117
Safari/537.36
datetime | Datetime of the event formatted
. YYYY-MM-DD hh:mm:ss Yes
as a 24 hr UTC timestamp
siteid Unique identifier
§ . TC-#HHHH-H# Yes
(Provided by Customer Success)
app* Type of device where the event
PP P vice w) , V,, .~ | Web Yes
happened (values: ‘app” or ‘web")
type* Description of a Web/App event or
yP p. [App Purchase Yes
user action

customda | Custom defined details that add
customer_new,channel_p

ta* more granularity to the event No
" "g Y aid-search
type

passthru | Static value 1
(used only for validation purposes |1 Yes

during testing)

Other available Dimensions: (These dimensions are only available via custom reporting.)
orderid, amount, sku, customertype, channel

Authentication

The iSpot API utilizes oAuth2.0 for authentication, which involves using your client_id and
client_secret to make a POST request to the authentication endpoint to retrieve a bearer

token. This token is used for the subsequent API call in order to upload your data.

Credentials

Your credentials will be provided to you by your Customer Success representative and
should be obtained prior to moving past this step. These credentials are for
demonstration purposes only, but yours will be the same number of characters as

outlined below.

ClientID

Your client_id is a 20-character alphanumeric value used to authenticate
Ex. 89ab614c1732d98e123f

Client Secret

Your client_secret is a 40-character alphanumeric value
Ex: Trif3k6PzStGhQcWLUMAcKdXr4g4s6rUcHwyTSby

Grant Type

When authenticating the grant_type parameter will always be the string
‘client_credentials’

Retrieving a Bearer Token

Using the given credentials, you will make a POST request to the endpoint

https://apiispot.tv/v4/oauth2/token and pass your client_id, client_secret and

grant_type as a parameter in the request headers. Authentication will vary depending on
which method you are using to interact with our API, but the mechanics of the request are

largely the same.

Token Expiration

Please note that your token is valid for a period of , at which point you will need to
retrieve a new token. It is recommended that you limit the amount of token requests per

day and only request a new one when absolutely necessary.

Example using curl from command line
Authenticating
curl --request POST \
--url 'https://api.ispot.tv/v4/oauth2/token' \

--data
‘client_id= &client_secret= &grant_type=client_credentia
s’

https://api.ispot.tv/v4/oauth2/token

After running the previous command, it should return your Bearer Token as shown below:

Sample Response with Bearer Token

{"token_type""Bearer","expires_in":86400,'access_token""eyJ0eTAiOiJKVIQILCIhbGci
OiJSUzIINiJ9.eyJerWQIiOilyWelwMPBKMDdJZJRMZWRIiYjZkNSIsimpOaSI6ljUyNDgxY2YzZT
VMRQTKOGFIZGITYWQ3NWRNhMjg4NDFIYJESMTE2M2JMZGNiYjFkZWJhOTgIZDRjZmUYZjY
OODEXOTBIY]M5NWIINWViIODM4liwiaWFOIjoiMTYXSjg3MTIXTRA5OTUONzMILCJuYmYiOilx
NjE20DCXMJEXLKENTQ3NYISIMVACCIBE2MTYENTC2MTEUOTG2NDESliwic3Viljoiliwic2Nv

cGVzljpbXX0.jh0UPXZR6CgPWMCTRYUPQMK5AFBIIZJ3VCeWITIhIZLeiAh3pZWAKSLVEt2mA
vbC _XD77CWxx_lyub-O2TX2Ty4GrjZms3XQBJw _XEGAGLQ77XNZ5E3iXOXEFOVIAIKX7MP
tOGIHLSZgOW-2cDeplLyE-xUMIplp6hul2ndid12rZOcEQgtT44W7XIKUIFtpGZC GdjQfI3AfH

YIfT2eInTRGZifNNLjpAKWIMXIQas5LXzLXx6PTLUNCIf3kCAWRSSTTxfmspKZDfIS8I6LGXVW?2

4p1UW7IRrdkJGzuuUdIpz25VTKxx_3ZSB86MEWzDABYaISGYyqgXvOvi9eloR7d _ug'}

Your bearer token is a 671-character alphanumeric value valid for 24 hours
(86400 seconds)

Making an API call

The bearer token returned in the previous step will be used to make the subsequent API
upload. You'll want to copy and paste or store your bearer token in a variable, which will
be passed through the request headers as a parameter. Ex. -—header Authorization:

Bearer

Splitting your Files

If your file(s) are larger than 200 MB they must be spilit prior to uploading via the API.
Splitting files can be tedious, which is why we've provided a couple different ways in this

section that you can use to split them programmatically in seconds.

Python3

The Python file splitting method converts a single large csv file into multiple csv files that

are each 200 MB in size. Simply specify the full path to the file as indicated in the following

example, and then run it in any Python3 environment.

from itertools import chain
def split_file(filename, pattern, size):

with open(’/Specify/fullPath/to/file.csv', Tb’) as f: Change path to your file

% name

header = next(f) for index, line in
enumerate(f, start=100):
with open(pattern.format(index), ‘wb') as out:
out.write(header) n
=0 forlinein
chain([line], f):
out.write(lin
e)n +=
len(line) if n
>= size:
break
if __name__=="__main__" split_file(’doto.csv',

'file{0:03d}.csv', 200000000) print('\nDone.\n’) Files break out at 200 MB

. specified (in bytes)

Bash

The Bash file splitting method converts a single large csv file into multiple csv files
specified by the amount of lines. You will need to determine the appropriate number of
lines to keep the file size under 200 MB. Run this method in a terminal in the folder where
your csvV file is located. Change the file name and the number of lines where indicated in
green in the following example.

tail -n +2 test.csv | split -1 500000; for file in “Is xa*'; do head -n 1test.csv > tmp_file; cat $file >>
tmp_file; mv -f tmp _file $file; done; for file in xa*; do mv "$file” "$file.csv’; done

Upload File(s) via Curl

curl -X POST https://api.ispot.tv/v4/metrics/conversions -H 'Authorization: Bearer YOUR _TOKEN'-H
'content-type: multipart/form-data’ -F ‘upload|file]=@filename.csv'

Upload File(s) via Python

import http.client, json, csv, requests

def get_token():
conn = http.client. HTTPSConnection("api.ispot.tv")

client_id ='"YOUR_CLIENT_ID"
client_secret="YOUR_CLIENT_SECRET'
grant_type = 'client_credentials'

payload =
"client_id={CLIENT _ID}&client_secret={SECRET}&grant_type={GRANT_TYPE}".format(CLIENT_ID=client_id,
SECRET=client_secret, GRANT_TYPE=grant_type)

headers = {
'content-type': "application/x-www-form-urlencoded"

}
conn.request("POST", "/v4/oauth2/token"”, payload, headers)

res = conn.getresponse()
token_raw = res.read()
data_parsed = json.loads(token_raw.decode("utf-8"))

access_token = data_parsed|'access_token’]
conn.close()
return (access_token)

file_name = 'filename.csv'
files = {'upload|file]": (file_name, open(file_name, 'rb'), "multipart/form-data"},}

conn = http.client. HTTPSConnection("api.ispot.tv")

payload =""

headers ={
‘Authorization': "Bearer {TOKEN]".format(TOKEN=get_token()),
}

try:
response = requests.post('https://api.ispot.tv/v4/metrics/conversions), files=files, headers=headers)
print{response.status_code, files, response. text)

excent Exception as arr:

The following table provides a list of iSpot APl endpoint responses.

HTTP status

201 (Created)

Message

Uploaded. Our team will process your
request soon! Thank you.

Case

The CSV file has been successful
submitted.

400 (Bad Request)

The content type request is not valid.

The headers and the content in the
request are not correct. You must provide
multipart/form-data to successfully
submit the CSV format file.

400 (Bad Request)

The request must contain a CSV format
file to be imported.

The headers are present, but a CSV
format file was not submitted with the
request.

400 (Bad Request)

The file cannot be processed because it
is not in the required CSV file format.

The file submitted is not in a CSV file
format. Only correctly formatted CSV files
are supported.

400 (Bad Request)

The content is not valid. Please validate
the headers and content.

For CSV files, the first line of the file must
contain the following mandatory
headers:

LATEST_IPADDRESS, SITE_ID, TIME_STAMP

400 (Bad Request)

The file is too small. The minimum file
size allowed is 8 MB.

The size of the file submitted is smaller
than the minimum size required.

400 (Bad Request)

The file is too large. The maximum file
size allowed is 200 MB.

The size of the file submitted is larger
than the maximum allowed.

401 (Unauthorized)

Unauthorized

The credentials submitted for either
username or password are incorrect.

409 (Conflict)

The file already exists.

The CSV file submitted is already created
and published on iSpot.

500 (Internal Error)

Internal error. Please contact our API
team.

An unknown error occurred. Contact the
APl team.

500 (Internal Error)

The server disk is full. Please contact our
AP| team.

Insufficient server space prevents the
process from handling file requests.

	
	Overview
	Steps Required
	CSV File Format
	Upload Requirements
	Matching Methodology
	
	Available Dimensions
	
	Authentication
	Credentials​
	Retrieving a Bearer Token​
	Token Expiration​

	​Making an API call
	Splitting your Files
	Upload File(s) via Curl
	Upload File(s) via Python

